Vertical Structures of Anvil Clouds of Tropical Mesoscale Convective Systems Observed by CloudSat
نویسندگان
چکیده
A global study of the vertical structures of the clouds of tropical mesoscale convective systems (MCSs) has been carried out with data from the CloudSat Cloud Profiling Radar. Tropical MCSs are found to be dominated by cloud-top heights greater than 10 km. Secondary cloud layers sometimes occur in MCSs, but outside their primary raining cores. The secondary layers have tops at 6–8 and 1–3 km. High-topped clouds extend outward from raining cores of MCSs to form anvil clouds. Closest to the raining cores, the anvils tend to have broader distributions of reflectivity at all levels, with the modal values at higher reflectivity in their lower levels. Portions of anvil clouds far away from the raining core are thin and have narrow frequency distributions of reflectivity at all levels with overall weaker values. This difference likely reflects ice particle fallout and therefore cloud age. Reflectivity histograms of MCS anvil clouds vary little across the tropics, except that (i) in continental MCS anvils, broader distributions of reflectivity occur at the uppermost levels in the portions closest to active raining areas; (ii) the frequency of occurrence of stronger reflectivity in the upper part of anvils decreases faster with increasing distance in continental MCSs; and (iii) narrower-peaked ridges are prominent in reflectivity histograms of thick anvil clouds close to the raining areas of connected MCSs (superclusters). These global results are consistent with observations at ground sites and aircraft data. They present a comprehensive test dataset for models aiming to simulate process-based upper-level cloud structure around the tropics.
منابع مشابه
Global Variability of Mesoscale Convective System Anvil Structure from A-Train Satellite Data
Mesoscale convective systems (MCSs) in the tropics produce extensive anvil clouds, which significantly affect the transfer of radiation. This study develops an objective method to identify MCSs and their anvils by combining data from three A-train satellite instruments: Moderate Resolution Imaging Spectroradiometer (MODIS) for cloud-top size and coldness, Advanced Microwave Scanning Radiometer ...
متن کاملObserved relationships between cloud vertical structure and convective aggregation over tropical ocean
Using the satellite-infrared-based Simple Convective Aggregation Index (SCAI) to determine the degree of aggregation, 5 years of CloudSat-CALIPSO cloud profiles are composited at a spatial scale of 10 degrees to study the relationship between cloud vertical structure and aggregation. For a given large-scale vertical motion and domain-averaged precipitation rate, there is a large decrease in anv...
متن کاملCluster analysis of tropical clouds using CloudSat data
[1] The mesoscale patterns of cloud/precipitation radar reflectivity from early CloudSat data are used to identify distinct tropical cloud regimes via a cluster analysis. Five basic cloud regimes are identified, and the geographical distribution of their occurrence frequency is quantified. Although the contemporary MODIS observations show some limitations to CloudSat observations, comparison wi...
متن کاملThe relative influence of environmental characteristics on tropical deep convective morphology as observed by CloudSat
Utilizing a previously developed CloudSat cloud object database, the sensitivity of oceanic, mature, deep convective cloud morphology to cloud-scale environmental characteristics is examined. Convective available potential energy (CAPE), aerosol optical depth, midlevel vertical velocity, and tropospheric deep shear are all used to characterize the environment. The sensitivity of various aspects...
متن کاملCharacterizing tropical overshooting deep convection from joint analysis of CloudSat and geostationary satellite observations
[1] Tropical overshooting deep convection (ODC) plays an important role in affecting the heat and constituent budgets of the upper troposphere and lower stratosphere. This study investigates the properties and behaviors of such intense deep convection using a combination of CloudSat observations and geostationary satellite data. Our study approaches the subject from two unique perspectives: fir...
متن کامل